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Abstract 

 

In this paper, I present, first, a categorization of the many uses mathematics 

has in science as a methodological tool. I identify four: representative, 

instrumental, predictive and heuristic. I introduce the issue in a historical 

context, discussing it more systematically afterwards. My approach is 

Husserlian thoroughly, which means that I hold the following views: 1) real 

nature is perceptual nature, constituted out of the hyletic material of the 

senses by the action of built-in psychophysical proto-intentional systems; 2) 

mathematized nature is an intentional construct devised for methodological 

purposes; it instantiates idealizations of formal-abstract structures of 

perceptual nature, but can also incorporate non-representing (imaginary) 

elements; 3) mathematics serves science by offering contexts of 

representation of perceptual reality and instruments of theoretical 

investigation of mathematical substitutes of reality. I conclude by contrasting 

my approach with Husserl’s own. 

 

Keywords: Phenomenology, Husserl, mathematics in science, idealization, 

intentionality 

 

 

A philosophy is alive when it inspires, when it offers 

instruments with which to think. Particularly about questions 

its creator may have tackled, but not exhaustively or with the 

same interest one may have. When a philosophy is good only for 

exegetical rumination, incapable of addressing present-day 

problems, it became a museum piece. 

Husserl is a philosopher still very much alive. His 

philosophy offers a wide perspective from which to consider a 

variety of contemporary philosophical problems. The 

applicability of mathematics in physical science, which I will 
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tackle here, is one of them. My treatment of the problem will 

sometimes be very close to Husserl’s own, but will sometimes 

diverge into domains that Husserl himself did not tread. 

However, I will never abandon a Husserlian perspective. 

At the end of the paper I will point out what in my 

treatment can already be found in Husserl’s published work 

and how I think one can fully explain and justify the 

applicability of mathematics in science (and how inefficient 

mathematics is as guide to metaphysics) from a perspective 

that is Husserlian in spirit but that Husserl himself did not 

completely embrace, not for narrowness of sight but to remain 

faithful to some basic tenets of his epistemology and the call to 

personal responsibility that lies at the center of his philosophy. 

 

1. The scientific revolution of the 17th century was 

marked by two apparently conflicting tendencies; one, more 

accurate observation and experimentation, another, 

mathematization. But whereas observation and experimentation 

are modalities of perception, mathematization is the negation of 

it. To mathematize is to place physical reality beyond the 

possibility of perception, to make it perceptually inaccessible. 

There are then two essentially distinct conceptions of realities in 

modern science, the perceptual and the mathematical.  

Which is real reality? How do they relate to one another? 

If reality is that which we can, at least in principle if not 

actually, perceive, what does mathematics, whose domains are 

not perceptually accessible, have to do with it? But if nature is, 

at its inner core, mathematical, what is the role of perception in 

empirical science, particularly in the validation of physical 

theories?1 Which role does mathematics play in modern science 

and how did it come to play this role? Can it be logically-

epistemologically justified? 

   Mathematics entered the domains of natural science 

cautiously in the beginning, with the application of geometry in 

the study of the motion of bodies in physical space, but 

progressively ever more intrusively to the point of becoming 

indispensable to and overwhelmingly present in modern 

science. The use of geometry as an instrument of representation 

and investigation of the kinematics and dynamics of bodies in 
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space and of algebra as a means of expressing and dealing with 

quantitative relations among physical magnitudes pose, 

apparently, no mystery: after all, bodies, the space and 

trajectories in space have geometrical properties, and 

evaluating and comparing quantities are practices firmly 

established in our pre-scientific life. But, obviously, neither 

geometrical figures nor mathematical numbers are objects of 

perception. There is a gap to be filled between, on the one side, 

perception and the world of our common practices and, on the 

other, mathematical entities and mathematical reasoning. 

Things get more complicated with the development of science, 

when mathematical methods and objects with no immediate 

correspondents in perceptual reality or our common practices 

became ever more important and mathematics acquired other 

uses than the purely representational. 

But before attempting to understand and ultimately 

justify the many uses of mathematics in science one must 

identify them. I want to do this by following, if only 

superficially, the historical development of modern science, 

paying attention to those moments when mathematics 

conquered extra territory and extended its range of scientific 

applicability. 

Identification will be followed by explanation and, 

ultimately, justification. Understanding how mathematics can 

in so many ways be useful in science and justifying 

mathematization from a logical, epistemological and 

methodological perspective are philosophical tasks to which 

Husserl has greatly contributed, although not to the extent I 

think he could. 

His last published work, the influential The Crisis of 

European Sciences and Transcendental Phenomenology 

(henceforth Crisis), is basically a piece of propaganda for 

transcendental phenomenology as, among other things, the 

correct way of restoring meaning to fossilized scientific 

practices, mathematization particularly. By going back to the 

enthronization of mathematical methodology in natural science, 

as a genetic phenomenologist, not a historian, Husserl was able 

to detect how mathematization came to be, its goals and what 

he believed to be its limitations. He managed also to uncover 
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the many layers of intentional action that went into the 

establishment of the method but were, he thought, “forgotten” 

by tradition with the consequent endorsement of a wrong 

interpretation of both the concept of nature and the 

mathematical method of scientific investigation of nature. It is 

mainly this misinterpretation that Husserl criticizes, not the 

methodology per se, although some questions can be raised as 

to the extent to which he was comfortable with the full range of 

mathematical techniques in science. 

Much has been published on Crisis and Husserl’s 

analyses of “Galilean” science but my goal here is not to 

contribute to this literature. I use Husserl to my purposes. I 

believe that naturalism, which holds that the role of science is 

to describe what she finds in nature without in any way 

contributing to the constitution of nature itself, coupled with a 

wrong interpretation of the concept of nature, as pointed out by 

Husserl, obliterates any honest attempt at understanding the 

many uses of mathematics in science. But although I find 

Husserl’s analyses of the intentional constitution of nature in 

modern science, together with his explanation and justification 

of some of the uses of mathematics as a scientific methodology, 

correct, I also find them incomplete. Ironically, however, it is 

Husserl himself who offers the key to understanding the method: 

purely mathematical techniques and materially meaningless 

symbolic manipulations can, as scientific strategies, be logically 

and methodologically justified in formal ontology.2 

By investigating the formal-logical relations between 

formal theories and formal domains, formal ontology can tell us 

when truths of one domain or theory (for example, purely 

formal-mathematical extensions of mathematical 

representations of perceptual reality) are true in other domains 

and theories (for example, mathematical representations of 

perceptual reality themselves), thus safeguarding purely 

symbolic-mathematical means of scientific investigation. 

But let’s first better identify the diverse ways in which 

mathematics can be used as a methodological tool in science by 

following, as I said, a historical line. 
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2. Classical geometry has always been, from its 

beginnings with Thales and Pythagoras to its mature 

developments with Euclid and beyond, a science of perfect 

forms and their mutual relations, things that are not exactly of 

this world. 

In the Platonic interpretation, geometry deals with ideal 

archetypes inhabiting a world of their own that this world 

where we live can at best only imperfectly instantiate. We can 

ascend to this topos ouranos only through reason, not the 

senses. In the Aristotelian interpretation, on the contrary, the 

ideal forms of geometry are idealizations of actual or possible 

abstract aspects of this world that, however, as the idealization 

they are, are not of this world either. In this interpretation, to 

ascend to the geometrical realm, perception must be 

complemented with abstraction and idealization, the 

exactification of the perceivable. Geometry was by then already 

far removed from its origins in land surveying.3 

Despite is astronomical applicability, geometry had in 

antiquity no place in the science of the real world of our direct 

perceptual experience. The shapes of the world were not 

supposed to be, strictly speaking, geometrical; the quantitative 

aspects of reality were not supposed to be, strictly speaking, 

arithmetical. Before the Galilean revolution, empirical reality 

was perceptual reality, not an idealized copy of it where 

arithmetic and geometry proper had a place. For the ancients, 

the perceptual world could be measured, and bodies had 

perceivable shapes, but perceivable measures and shapes were 

not supposed to be approximations to a perceptually inaccessible 

core of mathematical exactitude lying deep in the world itself.              

This radically changed with the development of modern 

science by Galileo, Descartes and Newton, among lesser 

emblematic names. It all began with Galileo’s geometrization of 

the perceptual world, not as a mere methodological devise, but 

as the uncovering of a geometric reality within the world. 

Geometry entered natural science by means of a radical 

reshaping of the concept of nature, no longer what we perceive 

with our senses, but a perfectly geometrical reality buried 

deeply inside it, inaccessible to perception, only reason. Nature, 

real nature, became transcendent and immanent nature, only 
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an essentially imperfect image of it available to the senses. 

Disguising an invention as a discovery is the inaugural act of 

modern science. For Husserl, this was the origin of the “crisis” of 

science. By taking a product for a given, science alienated itself 

from the constituting presuppositions on which it sits, unaware 

of its true nature and the scope and range of validity of its 

methods, among which Galileo’s creation, mathematization. 

 

Let’s take a closer look at Galileo’s procedures in 

geometrizing the natural world. Two operations are 

fundamental: abstraction and idealization. By abstraction I 

mean a refocusing of intentional consciousness that brings 

certain aspects of physical reality to attention in detriment of 

others, for example, shape instead of substance (form instead of 

matter) and arithmetic proportions instead of causal relations 

(at least in Galileo’s typically kinematic treatment of motion). 

By idealization I mean mathematical exactification, for 

example, taking the shape of physical bodies as proper 

geometrical forms, instances of geometrical ideas. 

At a certain point in the Second Day of the Dialogue 

Concerning the Two Chief World’s Systems (Galilei 1970), 

Simplicius (the spokesman of scientific conservatism) criticizes 

Salviati (Galileo’s alter ego) for supposing that a sphere touches 

a plane in a single point. Spheres, Simplicius reasons, can be 

quite heavy and would deform a plane on which they are placed, 

thus escaping the idealized situation. In his answer, Salviati first 

recalls that in financial transactions one calculates with 

numbers independently of the matter coins are made of or the 

merchandise being sold or bought, and then explains that “[…] 

when the geometer philosopher wants to see concretely the 

effects proved abstractly, he must eliminate the interference of 

matter; if this is done, I assure you that things will be as exact 

as in arithmetical calculations […]” (ibid., 265ss). This 

exemplifies both abstraction and idealization, abstracting form 

in detriment of matter and idealizing real physical spheres and 

planes as ideal geometrical spheres and planes. 

Clearly, Salviati’s world is a mathematical world in the 

proper sense; however, he does not take geometrical 

idealization as an operation of substitution of reality by 
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irreality, of what does not exist for what does, but as an 

operation of prospection of reality itself, as the unveiling of 

reality’s inner, most fundamental reality. 

Galileo follows Euclid’s Elements very closely. For 

example, in discussing free-fall, velocity is not defined as the 

ratio between the space some mobile travels and the time spent 

in the journey, for this would go against Greek principle that 

ratios only make sense between homogeneous magnitudes. In a 

sense, for Galileo, numbers are not yet pure (ibid., 27). In 

discussing free-fall along inclined planes, Galileo states that 

two mobiles have the same speed when they travel equal spaces 

in equal times. Of course, one can define inequalities of 

velocities analogously. Notice that here Galileo reduces linear 

continuum physical magnitudes to geometrical line segments 

and deals arithmetically with ratios of line segments 

representing homogeneous magnitudes in conformity with 

Eudoxus’ theory of proportions as presented in Book V of 

Euclid’s Elements.          

It is often said that pre-Galilean physics is essentially 

non-mathematical, and that experience and observation were 

not as important for the ancients as they were for Galileo and 

his followers. This is at best an exaggeration. From Thales, the 

half-mythical creator of philosophy and mathematics, to 

Galileo, science was a mixture of observation, sometimes very 

accurate observation that could also be of a quantitative nature, 

induction and explanation, often based on clever analogies. The 

physics of Aristotle, for example, although not mathematical in 

the same way of Newton’s physics, is also concerned with 

quantities and quantitative relations. In On the Heavens, for 

example, Aristotle explicitly states a quantitative law relating 

the times two bodies take to cover the same distance in free fall: 

they are, supposedly, in the inverse relation of their weights; a 

body twice as heavy takes half the time. This is the law that 

Galileo claims, in the Dialogues, to have empirically verified to 

be false: bodies in free fall, he claims, cover the same distance 

in the same time independently of their weights if we do not 

take the resistance of the medium into consideration (a disproof 

of Aristotle’s law by reduction is also provided).4 
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Regardless of whether he indeed verified, or could have 

verified this principle empirically, Galileo’s criticism helped to 

establish the myth that Aristotle was not a good observer. The 

truth, of course, is that Aristotle’s principle is approximately 

correct for many cases of bodies free-falling in viscous media, 

the cases that Aristotle probably observed with more attention. 

There are, however, aspects of Galilean science that are 

completely strange to Aristotle. The concept of quantity of the 

latter is that of practical life and quantitative relations were 

certainly not supposed to be any exacter than those of ordinary 

mundane transactions. In Galileo, on the other hand, quantities 

are exact, represented by geometrical segments with which he 

could operate geometrically. Also, whereas Aristotle had only 

logic to derive the consequences of general principles, Galileo 

had geometry, a hugely more efficient instrument. 

The object of Aristotle’s science is the physical world as 

actually given to the senses, whereas that of Galileo is an 

idealized version of it where mathematics proper finds a place. 

Aristotle’s quantitative relations are not, strictly speaking, 

numerical – nor could they have been – and are supposed to be 

valid in the perceptual world. Galileo’s are numerical relations 

proper that are, however, strictly valid only in an idealized world. 

 

Descartes made two major contribution to modern 

science. One was the “invention” of space or, better, the modern 

scientific conception of physical space. By establishing that the 

essence of physical bodies is their extension, not their matter, 

Descartes established that reality is ultimately abstract, thus 

providing the key for the identification of real physical space 

with geometrical space. 

His second contribution was the creation of analytic 

geometry, where geometrical constructions can be carried out 

symbolically by algebraic means. Although not the first time 

that symbolic manipulations entered the realm of mathematics, 

for Descartes was preceded in it by the Italian algebraists of the 

Renaissance who invented “imaginary” numbers, the creation of 

analytic geometry opened the doors to the symbolic in science, 

mathematics as well as physics. This huge methodological step 

forward, however, is more clearly detectable in Newton. 
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  The mathematical methods of Newton are substantially 

more sophisticated than those of Galileo. And this is already 

evident in the first proposition of his Principia: the areas, which 

revolving bodies describe by radii drawn to an immovable 

center of force do lie in the same immovable planes, and are 

proportional to the times in which they are described. 

The proof of this assertion depends on Galileo’s principle 

of decomposition of velocities (the motion of the body is the 

resultant of an inertial tangential motion and an accelerated 

centripetal motion), the geometrical theorem that triangles 

with equal bases and equal heights have equal areas 

independently of the size of the two other sides, and the 

mathematical novelty, the process that we would call today of 

“taking the limit”, originally a creation of Archimedes. As 

physics is concerned, however, Newton’s truly original 

contribution was that of force. 

In our pre-scientific experience, there are at least two 

ways in which a body can move, by itself, due to some internal 

cause, or by being pushed, pulled or otherwise acted upon by 

another body that usually is in contact with it. The ancients 

attributed a “soul” to things that could move by themselves, 

people or animals, and did not seem to see any mystery in a 

body somehow inheriting the movement of another body that 

touches it. But there are situations in which inanimate bodies 

move without being touched by other bodies, for example, 

smoke that flies up and a rock that falls. Aristotle saw both 

types as natural motions driven by an internal disposition to 

regain a natural place, inertial motion as we would say today, 

involving final but no efficient causes. 

But there is one unnatural type of motion without direct 

contact that the ancients knew well, magnetic-induced motion. 

Naturally, they tried to explain it in terms of causes that were 

familiar to them, direct action and souls. Aristotle says that to 

explain magnetism Thales attributed souls even to inanimate 

bodies (“all things are full of gods”). Others abandoned 

animistic for materialistic explanations like effluvia, 

emanations from the magnetic stone that somehow, by some 

clever mechanism, “pulled” the pieces of iron. 
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Inanimate bodies acting upon one another at a distance 

without any intervening mechanism was out of question. 

Aristotle criticizes both animistic and materialistic 

explanations then available for magnetism, thus running out of 

possibilities for explaining the phenomenon. Since it does not fit 

well into his theory of motion, which required direct contact for 

efficient causation, Aristotle passes in silence over the 

phenomenon of magnetic induced motion. 

Newton’s stroke of genius was to introduce a notion, that 

of force, as a completely general cause of non-inertial motion, 

that is, non-uniform motion in inertial frames. After 

guaranteeing in his first law of motion the existence of frames 

of reference in which bodies would be at rest or in uniform 

rectilinear motion if sufficiently far from other bodies (in empty 

space particularly) he introduces by a definition, the second 

law, the notion of force as that which causes acceleration, 

whatever this may be. In the words of Newton: 

Def. IV: An impressed force is an action exerted upon a 

body, in order to change its state, either of rest, or of moving 

uniformly forward in a right line. 

This force consists in the action only; it remains no 

longer in the body, when the action is over. For a body 

maintains every new state it acquires, by its vis inertiae only. 

Modern science contradicts Aristotle’s theory of motion 

twice: Galileo’s principle of inertia had already eliminated the 

need of constant action for the preservation of motion, Newton’s 

concept of force eliminates the need of direct contact for 

changing the state of motion. 

Now, and this is very relevant in the story I’m telling, 

Newton does not care to tell us what forces are and how they 

act, by internal disposition, contact with other bodies, or some 

intervening mechanism. 

“For I here design only to give a mathematical notion of 

those forces, without considering their physical causes and 

seats (my emphasis)”, he says. One does not know what forces 

are, we only know what they do in quantitative terms: forces 

“cause” acceleration depending on an intrinsic property of the 

bodies upon which they act, their “mass”, which measures the 
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body’s willingness to have their state of motion altered. In the 

very last scholium of the book, he says: 

“But hitherto I have not been able to discover the cause 

of those properties of gravity from phenomena, and I frame no 

hypotheses; for whatever is not deduced from the phenomena is 

to be called a hypothesis, and hypotheses, whether 

metaphysical or physical, whether of occult qualities or 

mechanical, have no place in experimental philosophy”. 

Clearly, only what has quantitative expression has a 

place in Newton’s non-speculative “experimental philosophy”. 

Only by abandoning the world of material beings and real 

causal relations and moving to a mathematically purified 

context where only quantitative relations mattered, Newton 

could introduce a purely mathematical notion of force with 

which to unveil the mathematically precise mathematical 

structure of the mechanism that makes the world go around. 

There are causal explanations in Newton’s science, but 

incomplete. We know that gravitational forces keep the world 

together, celestial bodies spinning around each other, and the 

seas in regular tidal motion, but we ignore what these forces 

are and how they act. We only know that forces impart 

acceleration, which allow us to find out the future and past 

trajectories of bodies and then, in principle, their precise 

position in space at any point in time, and this is enough. 

In mathematized physical science, which Newton’s 

mechanics exemplifies magnificently, only quantifiable 

magnitudes and quantitative relations matter. New notions are 

admissible provided they are quantifiable, and one knows how 

they relate quantitatively to familiar notions. Definitions take 

the form of algebraic identities telling how definiendum and 

definiens relate quantitatively to one another. Properties that 

are not at prima facie quantitative are admissible only if they 

can be given quantifiable representatives. For example, the 

principle of inertia states that in inertial frames rest and 

rectilinear uniform motion are “natural” states, which can only 

be altered by the action of “forces”. But bodies have a “natural” 

tendency to preserve their state of motion. What this tendency 

consists of is immaterial provided we know how to measure it. 

The degree of “laziness” of bodies, their unwillingness to alter 
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their state of motion, finds its quantifiable representative in the 

concept of inertial mass, which can be precisely expressed 

numerically in terms of some standard mass. The mass of the 

body increases with the force necessary to impart upon it a 

given acceleration. 

Other notions such as momentum (linear and angular), 

work, energy, etc., follow the same pattern. A particularly 

important methodological strategy can now be introduced, 

namely, the search for invariants, magnitudes that are 

conserved, for instance, energy or momentum, thus allowing the 

establishment of principles that have both explicative and 

heuristic virtues. Centuries after Newton, the neutrino was 

conjectured to exist only to guarantee the conservation of energy 

and other relevant quantities in certain nuclear reactions.     

The geometrization of motion became possible after we 

learned how the position and trajectory of bodies depended on 

kinematic and dynamic variables and how the former depended 

quantitatively on the latter. In its time, Newton’s Principia was 

the best expression of this new knowledge, the magnificent 

synthesis of geometry, kinematics and dynamics heralding a 

new science: mathematical physics. 

 

Geometry was by then almost synonymous with 

mathematics, but that was about to change. The analytic 

geometry of Descartes and Fermat, where geometrical 

constructions are replaced by algebraic manipulations, opened 

the doors to symbolic reasoning in mathematics. It would soon 

be adopted in physics too, proving to be in both domains an 

immensely rich and useful methodological strategy. By 

symbolic reasoning I mean reasoning by manipulating symbols 

according to rules without necessarily taking into consideration 

what the symbols mean or whether they have meaning 

(symbols usually stand for something, but not necessarily). 

Despite its practical utility and logical justification, 

Husserl believed that this strategy presented risks. Symbolic 

reasoning, he thought, cuts us from the things themselves, we 

are no longer directly concerned with intuitive contents, only 

with intuitively empty symbols that, in the best possible case, 

stand for things that can only in principle be intuited. By 
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forsaking intuitiveness, that is, perceivability, science became 

mechanical and ritualized. This was, Husserl thought, the 

beginning of the crisis of science that would eventually develop 

into a crisis of culture in general characterized by loss of 

meaning and direct personal responsibility. 

The problem gets considerably worse if symbols exist in 

the symbolic machinery of science that have no 

representational value. In this case, intuitiveness not only 

recedes into the background but is completely lost. Here a 

tension appears between undesirable symbolic alienation and 

desirable methodological effectiveness. Meaningless symbolic 

manipulation had at least since the 16th century proven its 

value as a methodological mathematical tool with the 

introduction of “imaginary” numbers in the theory of algebraic 

equations. There was no a priori reason why symbolic reasoning 

should not be methodologically relevant in mathematical 

physics as well. Indeed, time has shown that this strategy is not 

only useful but central in scientific practice. Although non-

representing symbols have no representational value, they can 

still play instrumental, predictive and heuristic roles in science. 

This considered, is Husserl’s criticism of “symbolic 

alienation” still relevant or should it be dismissed as old-

fashioned and misguided conservatism? I believe Husserl’s 

cautious admonitions still resonate, although not as a critique 

of scientific methodology itself, which he never meant them to 

be, but of the absurd interpretation given to it. Husserl urges 

us to uncover, recover and vivify the sedimented meaning of our 

scientific practices. By tracing the intentional genesis of both 

the modern conception of physical reality and the 

methodological strategies devised for investigating it we can 

shun absurd accounts of the adequacy of these methods. As we 

will see, Husserl’s philosophy itself opens a possible route for 

explaining the efficacy of mathematization in science, even 

when involving meaningless symbolic reasoning, and justifying 

it on logical and epistemological grounds.   

 

There are essentially two ways of accounting for physical 

action, action at a distance and action through a medium that 

“transmits” the action.  Classical Newtonian theory of 
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gravitation favored action at a distance. Classical 

electromagnetism, with Faraday and Maxwell, preferred action 

through a medium, whose nature, however, changed 

dramatically throughout history, from something real to 

something mathematical. At first, electromagnetic action was 

supposed to be transmitted through a material medium that 

supported the electromagnetic field, the never detected ether, 

an elusive substance known only “indirectly” through its 

quantifiable properties. Later, the medium became space itself, 

but with the property of acting and reacting to the presence of 

electric charges and currents. More recently, with quantum 

field theory, the role of carriers of electromagnetic action was 

taken by photons. In relativistic theory of gravitation, at least 

until it is properly quantized, the medium is still space, or 

rather spacetime, whose geometry, however, depends on the 

distribution of matter.  Bodies act on the geometry of space, 

which in turn determines how bodies move. This relation 

between matter and geometry, the world and mathematics is 

illustrated vividly in Einstein’s field equation, mathematical 

entities on one side of the equation representing physical 

entities, those on the other standing for geometrical entities. 

More than a formal equivalent of gravitational action, the 

geometry of space-time is gravity and explains its action. As we 

see, besides mathematizing reality, mathematization also often 

reifies mathematics. Mathematics does not simply represent 

reality, mathematics is part of reality. Some go as far as saying 

that reality is nothing but mathematics. 

 

Mathematics is most active in quantum mechanics, 

playing therein all the roles it can play. 

De Broglie conjectured that electrons and similar 

particles that carry energy E and momentum p are associated 

with waves with frequency υ and length λ such that E = hυ and 

p = h/λ (introducing the wave number k = 2π/λ and the angular 

frequency ω = 2πυ, E = (h/2π)ω = ħω and p = ħk). Here, 

mathematics is a language where to express physical correlations 

in idealized form, playing thus a representational role.        

Schrödinger imposed upon himself the task of finding the 

equation of such a wave (Schrödinger 1926). It is not very clear 
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how precisely he did it, the heuristic strategy he used, but for my 

purposes this is not important, the following “derivation” suffices. 

Consider first a particle with definite energy; its associated wave 

has, then, definite frequency and can be represented as a 

sinusoidal wave: ψ(t) = sin (ωt). Helmholtz’s equation applies: 

Δ ψ + k2ψ = 0, where Δ is the Laplacian operator. Substituting 

one gets Δ ψ + (p/ħ)2ψ = 0. But p2 = 2mK, where m is the mass of 

the particle and K its kinetic energy. Therefore, ħ2/2m Δ ψ + (E – 

V).ψ = 0, where E is the total energy and V the potential energy of 

the particle. This was the original Schrödinger equation, usually 

written thus: -ħ2/2m Δ ψ + Vψ = Eψ. (1) 

Consider now the evolution of the state function of the 

particle. Supposing that ψ(t) is a complete characterization of 

the state of the system at time t, the evolution equation must 

involve only the first derivative of ψ. But, under this 

hypothesis, ψ cannot be a sinusoidal function, it must have the 

more general form ψ(t) = exp(iωt). From this we get: iħψ’ = E ψ 

= -ħ2/2m Δ ψ + V. ψ, which is the time dependent Schrödinger 

equation. Here, we see, first, how mathematics succeeds in 

providing an adequate context of representation – complex 

analyses – where both the form of the wave (given the formal 

restriction that the expression for the wave at one instant must 

determine its expression at any future instant) and the 

presupposition itself (the wave equation must be of first order in 

the time variable) can be expressed. And, second, how by using 

mathematics instrumentally, i.e. as a context of derivation, one 

succeeds in writing the evolution equation, the time dependent 

Schrödinger equation. Now, still using mathematics 

instrumentally one can, ideally, solve the equation and obtain 

the function ψ(t) from which one can derive knowledge about the 

system that allows us to make predictions about it. Here, 

mathematics plays its predictive role (of course, these roles are 

not independent one of the others). The success or failure of 

these predictions determine the success or failure of the whole 

theoretical schema.  

Historically, the development of quantum mechanics 

was heavily conditioned by the hydrogen atom (one proton and 

one electron) and its spectrum, characterized by lines of 

emission of radiation with different well-defined frequencies. If 
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a wave function ψ is supposed to characterize the state of the H 

atom, it is natural to see its states of definite energy as 

eigenvalues of an equation of the type Êψ = Eψ (2), where Ê is 

some Hermitian “energy operator”, with state-functions 

associated with the states of definite energy as corresponding 

eigenvectors. ψ must, then, be a vector in a complex vector 

space. The formalism of linear algebra is then summoned as the 

adequate to express quantum mechanics (matrix mechanics). 

Now, comparing (1) and (2) we see that Ê = (-ħ2/2m Δ + 

V) and, therefore, the operator associated with the x-component 

of momentum must be = -iħ∂p/∂x, etc. Again, as we see, complex 

numbers cannot be avoided. This gives us a “recipe” of how to 

write the Schrödinger equation for a quantum system: write the 

Hamiltonian, “quantize” using the correspondence above and 

substitute in (2).  

The solutions of the corresponding equation for the H 

atom fit well the experimental data, i.e. the known frequencies 

of spectral lines, showing the correction of the approach to the 

problem. Here, again, mathematics plays its predictive role and 

because it plays this role the entire symbolic apparatus can be 

put to test. 

Notice that not all terms of the mathematical language 

plays a representational role. The symbols i and ψ, or those for 

the operators, for example, are not denotative, there is nothing 

in perceptual experience that corresponds to them directly. The 

situation is like that of language, in which some terms, such as 

names, denote but others, such as prepositions or conjunctions, 

do not, being only elements of internal articulation of the 

discourse. 

 

Let’s consider now a particularly relevant instance of the 

heuristic role of mathematics in quantum mechanics, the 

mathematical “prediction” of the positron and antimatter in 

general. 

By substituting the energy and momentum operators in 

the relativistic equation for the energy of a free particle, Oscar 

Klein and Walter Gordon succeeded in obtaining, in 1928, a 

relativistic version of Schrödinger’s equation (the Klein-Gordon 

equation). The equation can be generalized to particles under 
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the action of a potential. However, it did not agree to content 

with the experimental data when applied to the hydrogen atom. 

A characteristic feature of Klein-Gordon equation is that it is of 

second-order, the momentum operators are squared. Dirac 

considered that if the wave function provided indeed a complete 

characterization of a quantum system, then its value at some 

instant should be sufficient to determine its behavior in the 

future, and then the wave equation should be of first-order in 

the time variable. Now, he argued, since time and space 

variables are symmetric in relativity theory, the wave equation 

must be of first-order in all four spacetime variables. Based on 

these formal considerations, that the true quantum-relativistic 

equation of a particle must be of first-order on all variables, he 

arrived at a wave equation whose solutions, the wave functions 

characterizing the particle, are four-component spinors, each 

component obeying the Klein-Gordon equation. 

Again, the formal restrictions Dirac imposed on his 

equation were the mathematical translation of one 

desideratum, namely, that the wave function should contain a 

complete characterization of the system, and the established 

physical fact that space and time are formally symmetrical in 

relativity theory. Mathematics functions here as a context of 

representation where both the desideratum and the physical 

fact are expressible.    

  Now, in accordance with Dirac’s equation, the wave 

function of, say, an electron, has four components, each 

characterizing a possible state of the particle. Two of them, 

corresponding to states of positive energy, have natural 

interpretations, corresponding to two different possibilities for 

the spin of the electron, but the two remaining components, 

corresponding to states of negative energy, had by then no 

available physical interpretation. 

Dirac had two alternatives, either to dismiss the 

negative-energy solutions as senseless mathematical sub-

products of the formalism, or, more interestingly, look for some 

physical interpretation for them. But we should be careful here, 

there is nothing in the formalism itself pressing for the latter 

alternative and, even more importantly, nothing indicating what 

these physical things could be. Dirac was completely free to guess 
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what the “imaginary” solutions corresponded to, provided it had 

the required formal properties. Dirac guessed that these things 

were undetected electrons forming a “sea” of electrons (Dirac sea) 

trapped in all possible states of negative energy. 

Now, once one of these electrons moved to a state of 

positive energy, it would leave behind a “hole” that would 

behave formally as a positively charged electron with positive 

energy. This is how far mathematics can go, whether there is 

something in physical reality corresponding to this “hole” and 

what it is, mathematics is completely silent about. Dirac, 

however, was free to conjecture that there may exist in nature 

particles just like the electron, but positively charged, whose 

states are given by the two components of the spinor that 

corresponded formerly to states of negative energy of the 

electron. A few years later (1932), Carl Anderson discovered the 

positive electron, the positron, showing that Dirac had guessed 

right. But that remained a happy guess, not a prediction. Of 

course, the guessing was from the start subjected to formal 

constraints, which is all that mathematics can provide as a 

heuristic instrument. To claim that Anderson’s particle is 

Dirac’s “hole” is to claim more than what the facts allow. 

Anderson’s positron has only the formal properties of Dirac’s 

“hole”; there was no a priori guarantee that these “holes” were 

real nor that they would manifest themselves as positrons, since 

they could in principle materialize as anything with the right 

formal properties. In his heuristic role, mathematics unveils 

formal possibilities. It is all it can do, but it is already a lot.5 

 

3. This vol d’oiseau over the history of science illustrates 

what I believe to be the main uses of mathematics in science, 

representational, instrumental, predictive and heuristic. 

Summarizing: 

1) Representational. In this role, mathematics offers 

contexts where certain formal-abstract aspects of physical 

reality are instantiated in an idealized manner.6 Mathematics 

represents to the extent that it provides contexts of 

instantiation (materialization) of idealized formal-abstract 

(structural) aspects of physical reality.7 One is often interested 

in mathematically representing only restrict structural aspects 
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of reality, not the whole of it, and in general in such ways that 

not all mathematical entities and situations in the context of 

representation are themselves representational.8 

The single most important strategy in the process of 

mathematizing perceptual reality9 is quantification. The world 

is never the same, it changes in many ways; to quantify is to 

express the quantitative variability of the world as 

mathematical variables over numerical domains. For example, 

bodies have different volumes and the volume of a body may 

change in time (by volume one can simply understand the 

amount of space delimited by the body’s surface). We can 

compare volumes perceptually and convince ourselves that 

bodies have always more, less or the same volume as other 

bodies. These are perceptual facts (effectively perceived or 

potentially perceivable), but perceptual quantitative relations 

are not yet mathematical; at best, they are proto-mathematical. 

Quantifying the notion of volume amounts to expressing 

in numerical terms, in principle if not actually, the volume of 

any given body in terms of the volume of a standard body taken 

as reference, the unit. A magnitude is any physical entity that 

can be quantified, for instance, the volume of bodies; 

mathematically, a magnitude is a numerical variable ranging 

over the domain of all its possible values; i.e. all the numerical 

values representing the quantitative variability of the entity in 

question with respect to the relevant unit.10 

Magnitudes can have determinations beyond the purely 

quantitative, such as direction in space (velocity, acceleration, 

and forces, for example), or be combined in mathematical 

entities more complex than pure numbers (e.g. tensors). There 

are no limits to how mathematics can build complex entities 

from numbers to serve representational and instrumental 

purposes (see next section), complex numbers, numerical 

functions of many variables, vectors, tensors, fields, etc.     

It is important to emphasize that numbers, insofar as 

they represent quantitative relations11, do not express them as 

they are or can be experienced; numbers express only non-

experienciable idealizations of quantitative relations as they are 

perceived. The more and the less of perceptual reality can only 

be given a number by being idealized beyond the possibility of 
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perception. In short, to quantify, i.e. to express quantitative 

relations numerically, is already to idealize. 

Now, when sufficiently many physical magnitudes are 

quantified, for example, volume and temperature, one can 

express mathematically by formulas, i.e. algebraic correlations 

among the variables standing for these magnitudes, how one 

perceives (or conjectures) they to be related; how, for example, 

volume changes with the change of temperature. But 

importantly, formulas not only express what is effectively 

perceived, but also what is perceivable but not yet perceived, 

thus offering a sort of anticipation of perceptual experience 

(allowing predictions to be made). 

Structural aspects of physical reality other than the 

quantitative as, for example, spatial structure, can be 

mathematically represented by substituting perceptual space by 

an isomorphic numerical copy where spatial properties are 

expressible by numerical functions. We first label the points of 

space with n-tuples of numbers, their coordinates (n being the 

dimension of the space). This numerical labeling is not 

completely arbitrary for it must express the topological 

continuity of space (in Riemannian contexts) or its metric (in 

less general Euclidean contexts). Although the labels 

themselves do not express quantity, geometrical properties of 

space such as metric or curvature can be represented by 

numerical functions of the coordinates. The symmetries of 

perceptual space can also be represented by mathematical 

constructs in the numerical domain representing it. 

General principles and laws that we believe (perceive, 

conjecture) to rule over the behavior of reality can also be given 

mathematical expression. For example, the law of universal 

gravitation or principles of invariance such as the principle of 

conservation of energy or angular momentum (infinitesimal 

calculus offers the ideal context where to express these and 

other conservation principles). There are many such principles 

in physics, playing predictive, explicative, and heuristic roles, 

conservation of energy being probably the most important. 

Variational principles such as the principle of least action, for 

example, are also central: a certain function of given physical 

magnitudes, the action, is supposed to be always either 
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minimal or maximal in physically real processes. Again, only in 

calculus such a principle can be adequately expressed. 

Mathematical formulas, principles and laws express 

mathematical facts, representing in mathematically idealized 

form relations among physical entities and regularities in 

physical reality that cannot be adequately represented in any 

other way. Mathematical avatars of physical reality are not, 

even in principle, experienciable, but are assumed to be in 

principle perceptually approachable to any given degree of 

accuracy. Instead of a photographic copy of reality, mathematics 

provides an X-ray that captures only structure, but with an 

infinite degree of precision. Precision, however, that is not in 

reality itself, only in the way the X-ray machine operates. 

2) Instrumental. The first and most crucial step in the 

mathematization of physical (perceptual) reality is the 

representation of certain of its structural aspects 

mathematically, i.e. as aspects of convenient mathematical 

manifolds that substitute reality. Once these manifolds are in 

place, their mathematical theories can be developed. Now, 

mathematics takes the lead; its task, to investigate by 

mathematical means the mathematical representatives of 

(formal-abstract aspects of) the physical world, to bring to light 

subjacent relations, organizing principles, hitherto unperceived 

correlations, in short, any structural aspect of reality 

representable in the mathematical context in question. Thus, 

mathematics becomes instrumental. 

As such, mathematics is free to introduce terms that 

may or may not have representational value, provided they play 

a role in the internal organization of the theory. A good 

example is Schrödinger’s wave function, not itself 

representative of anything real (only the square of its module, a 

real-valued function, represents something “real”, a density of 

probability distribution). 

Additional terms may, of course, also represent, but not 

necessarily. The scientist must always be alert to the possibility 

of “imaginary” terms representing something in physical 

reality, in which case mathematics plays a heuristic role. When 

mathematical manipulations disclose hitherto unknown facts 
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involving only representing terms, mathematics plays a 

predictive role. 

3) Predictive. Mathematics predicts when it discloses 

mathematical facts that must correspond to facts in represented 

reality if the mathematical theory in question is a reliable 

representation of reality. If, for instance, the formula relating 

variation of volume to variation of temperature gives, after the 

required algebraic manipulations, a volume corresponding to a 

given temperature, then, if the volume is measured at that 

temperature and the formula is correct, one must get that volume. 

Therefore, the fact that predictions can in principle be 

falsified by observable facts opens a road for theories to be 

empirically tested. Of course, no test is definitive; theories are 

always pouring out predictions that must be put to test. If the 

prediction proves to be correct, the theory passes the test. But 

tests never end, and final confirmation is forever postponed. 

Empirical verification can falsify a theory but never verify it 

once and for all. 

Once a prediction is proven incorrect, the whole theory, 

its presuppositions, even its mathematical and logical setting is 

under threat. Fixing it requires ingenuity and is usually done in 

the most conservative way. There are no predetermined rules. 

Now, something interesting can happen. As said before, 

to play its instrumental role to content, mathematics can 

introduce any additional terms it finds necessary to develop the 

theory. There will, of course, be “predictions” involving terms 

that have no correspondent in represented reality. Of course, 

these are not really predictions but, rather, meaningless sub-

products of the mathematical machinery. They, however, allow 

mathematics to play maybe its most puzzling role, the heuristic. 

4) Heuristic. Mathematics plays a heuristic role when it 

suggests that there may be things in physical reality, though 

not for sure, that regardless of what they are, mathematics 

cannot say, have certain formal-structural properties that the 

mathematical formalism seems to reveal, but that could also be 

meaningless non-sense. 

There are diverse ways in which mathematics can help 

us in the risky business of guessing how reality may be like. 

Non-denoting terms that play only an instrumental role in the 
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formalism may correspond to hitherto unknown physical 

entities. Their efficacy in the derivation of observable 

consequences may be an indication of their physical reality. 

Hidden aspects of reality may announce their existence, 

formally if not materially, by the way they relate formally to 

known reality. 

Formal “predictions” can also be derived from principles 

or presuppositions built into the formalism. For example, the 

possible existence of the neutrino or conduction currents 

conjectured as consequences of the principles of conservation of, 

respectively, energy and electric charge. Or the “prediction” of 

anti-matter. The formal properties that Dirac imposed on his 

quantum-relativistic equation expressed both necessary 

relativistic constraints and a well-established methodology of 

quantization. The fact that his formalism could naturally 

account for the spin of electrons indicated that spin is 

essentially a relativistic property. That it also opened a formal 

possibility for the existence of positrons showed that something 

formally analogous to positrons might also be a necessary 

consequence of the junction of these two desiderata, relativistic 

equivalence of space and time (and Lorentz invariance) and 

standard quantization techniques (quantum equation derived 

from the expression for energy by substituting standard 

operators for variables). In short, the “prediction” of anti-matter 

did not come out of the blue sky merely as a sub-product of 

meaningless mathematical manipulations; symbolic 

manipulations were only an instrument for deriving the 

necessary formal consequences of the formal expressions of 

physical presuppositions and a methodological orthodoxy. 

 

4. The centrality of the representational role of 

mathematics in science requires closer attention: how and in 

what sense can mathematics represent reality? How can a 

mathematical world emerge from the perceptual world? Husserl 

in §9 of Crisis provides I believe, the answer: a mathematical 

world is constituted from the perceptual world by intentional 

action; the former represents the latter by replacing it as the 

object of science. 
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The life word: a world imposes itself upon us that we 

must either understand and control or die. The outside world 

has many dimensions, the physical is one of them. Our access to 

the physical world is essentially sensorial-perceptual; the 

sensorial is the purely material hyletic, the perceptual, the 

sensorial matter endowed with form, either given directly with 

the sensations or imposed upon them by the perceptual system 

itself: to perceive is already to constitute, at a pre-logical, pre-

categorial, proto-intentional level. 

The perceptual world is the physical world of our pre-

scientific life, the physical world of the lifeworld; it is a real, 

concrete, materially filled, finite world. Our knowledge of the 

perceptual physical world is basically inductive, the result of 

non-scientific perception-based attempts at understanding and 

disclosing patterns and regularities in it that allow us to control 

it to some extent and survive. Science, on the other hand, is a 

rational endeavor whose most basic task is to improve our 

capacity of making inferences about the perceptual world12, but 

that is not itself a practice of the lifeworld. Mathematization is 

a further methodological development of scientific practices. 

The perceptual world is made of objects, processes, 

properties, correlations that display proto-mathematical (not 

yet properly mathematical) aspects. Bodies have form, although 

not geometrical form; they occupy position in space and 

maintain with one another spatial and kinematic relations that, 

however, are not properly speaking geometrical or 

chronometrical. Bodies have intensive and extensive properties 

such as height, length, volume and size (extensive), 

temperature, color and hardness (intensive) that can be 

measured by means available in the lifeworld, meters, balances 

and thermometers, but not with mathematical precision. Bodies 

can be compared as to the hue, luminosity and intensity of their 

color or their degree of hardness, but with some degree of 

fluidity and subjectivity. In the life-world, there always is room 

for arguing about which body is redder or harder. Bodies act 

upon one another, but not by means of precisely quantifiable 

mathematical agents. 

Quantitative determinations of the perceptual world are, 

from a mathematical perspective, essentially imprecise, but 
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cannot be otherwise as far as perception is the privileged means 

of access to reality and objectivity is only another name for 

intersubjectivity. Mathematization is an attempt at overcoming 

subjective perspectives and perceptual “imprecisions”. However, 

since only the formal-abstract aspects of perceptual reality can 

be a matter of intersubjective agreement, for form only is 

objectively real, the cost of objectivity is the loss of essentially 

private perceptual materiality. The materially empty skeleton 

of perceptual reality can then be mathematically rectified, i.e. 

exactified, so mathematics can come in with full force as a 

methodological device. 

 The perceptual word, a dimension of the pre-scientific 

lifeworld where we live our daily lives, as is obvious, is not 

merely given, we do not stumble upon it readymade. Although 

there is, of course, a given of the world, it must interact with 

our perceptual systems for a perceptual world to be constituted. 

The perceptual world is a product, although not of a conscious 

and fully intentional process; it is the given of the world 

endowed with perceptual sense. To perceive is to make sense of 

the senses; perception is already a cognitive process of a fully 

active, although not fully conscious subject. The proto-

mathematical aspects of the perceptual world are then as much 

a given as a contribution of the perceiving subject, not because 

it so wants, but because it cannot help it; the perceiver cannot 

choose to perceive differently from how it perceives because it 

cannot choose to be different from how it is. The way we 

perceive the world tells as much about the world as about us. 

The proto-mathematical aspects of the world are not necessarily 

out there; they can be, at least in part, a contribution of ours. 

Our daily lives are directed to essentially practical ends, 

our own survival and the survival of our species being the 

supreme good. A certain capability of understanding, 

controlling and predicting the behavior of the world as 

perceived is an important instrument of survival to which 

certain practices of the lifeworld contribute, such as measuring, 

counting or comparing. This is not yet science but science will 

gradually emerge from these practices as a way of improving 

our ability to understand, predict and act on the world.13 

Mathematization is only its most radical development, one that 
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goes beyond the perceptual world to better investigate some of 

its aspects – its proto-mathematical aspects, in particular – 

those precisely that can be mathematically idealized.      

   The mathematical-physical world. The mathematical-

physical world is abstract (ontologically dependent), idealized 

(exactified), formal (materially empty), non-perceivable, and 

infinite; our knowledge of it is mathematical and deductive, 

based on theories, principles, and laws (for they only can 

theoretically master an infinite domain14). 

The mathematical-physical world is not an 

independently existing entity, but a higher-level intentional 

construct; it is the mathematization of the perceptual world, 

requiring for its constitution many layers of intentional action. 

Abstraction or, more precisely, formal abstraction is one of 

them. By stripping the perceptual world of its material, 

intuitive, private content, it reduces it to its objectifiable 

abstract form. Spatial shapes regardless of material support 

and quantitative relations regardless of what is related, for 

example.15 Quantification is an instance of formal abstraction; 

once a magnitude is quantified it is reduced to a numerical 

variable. The mutual dependence of magnitudes in the 

perceptual world is, when mathematized, restricted to their 

quantitative aspects, expressible by numerical correlations, 

formulas and equations. 

The spatial form of bodies, despite abstract, are still real 

forms in perceptual space. Their geometrization requires a 

further step, idealization, by which real forms are exactified as 

geometrical forms proper. To idealize something (a spatial form, 

a quantitative relation) is to take it as an instance of an idea (a 

geometrical form, a number).16 By so doing one can investigate 

the spatial properties of the real, perceptual world 

geometrically. Let’s consider an example. Suppose one wants to 

know whether a rigid object of the physical world, say a right-

hand glove, can occupy a predetermined place in space, say, 

that of a similar left-hand glove, by simply moving in space 

without changing its form. Since the problem involves only the 

spatial form, not the material content of gloves, we can consider 

it abstractly and, by idealization, geometrically: are the right-

hand glove form and the left-hand glove form equal under rigid 
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motions in space? The geometrical problem can now be tackled 

and the negative answer obtained. The standard approach is 

algebraic, in terms of groups, because the problem has more to 

do with group-theoretical properties of motions in space than 

space itself. This only solves the initial real problem because 

abstraction and idealization can somehow be undone. 

Abstraction does not do away with matter altogether, it only puts 

it in the background as a standard semantics for filling (giving 

material content to) real forms mathematically idealized. By 

going back from mathematical to real forms, in the direction 

opposite of mathematization, and filling these real forms with 

their original material content, one gets from the mathematical a 

physical impossibility. By being purely formal, the impossibility 

of the body in question being placed in the place in question can 

be disclosed by a formal-mathematical investigation. 

Another crucial step in the process of mathematization 

is the sorting out of qualities into primary and secondary. 

Primary qualities are objective and mathematizable; secondary 

qualities are subjective and intrinsically perceptual. Today, we 

take as an evidence that qualities such as taste, color and 

texture are secondary, residing in consciousness rather than in 

the object, but that spatial form is primary, residing in the 

object itself. But every evidence one may adduce for the 

subjective character of, say, color (dependence on subjective 

states, conditions of observation and the like), holds good for 

spatial form too. The privilege of primary properties is based on 

its willingness to be mathematized. If, say, color, could be as 

easily quantified in terms of objective standards of hue, 

saturation and brightness there would no doubt exist a 

mathematical theory of colors independently of electromagnetic 

theory (where color is reduced to a quantifiable magnitude, 

frequency of luminiferous radiation). 

Instead of bodies with all the properties one perceives 

them to have, the “bodies” of the mathematical-perceptual 

world are essentially clusters of objectively measurable abstract 

qualities, geometric extensions endowed with mass, which 

measures its capacity to resist changes of state of motion, 

electrical charge, electrical conductivity, thermal capacity, 

velocity, position, acceleration, etc., all essentially numbers or 
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higher-order mathematical objects such as vectors.17 The 

mathematical-perceptual world can be further enlarged with 

entities that have no direct correspondent in perception, such as 

fields, forces, potentials, etc. At this point, mathematical 

substitutes of perceptual reality are no longer exclusively 

representational; they became methodological tools with which 

to explore and probe perceptual reality, mathematical manifolds 

like any others to be investigated by mathematical means like all 

others. Mathematical theories of the mathematical-physical 

world must eventually be confronted with perceptual reality, but 

not directly, with raw perception, but indirectly, with a 

mathematically purified version of perception. 

The state of the world is at any point in time 

characterized by the values of relevant variables and how they 

correlate to one another. Both variables and correlations can 

change with the flow of time, hopefully in a lawful manner. For, 

infinite as it is, the world is supposed to be submitted to strict 

causal laws that can be adequately expressed only 

mathematically.18 

The contrast with the perceptual reality of the life-world 

is striking. The perceptual world is a materially filled, sensorial 

world, a world of colors, scents, sounds, textures, and tastes. It 

is also a finite world, although open to a potentially infinite 

horizon of possibilities. Perceptual space is a sensorial, not 

mathematical space, and chains of causalities in the perceptual 

world can only be expressed in morphological (descriptive), not 

mathematical terms. 

The constitution of a mathematical representant of the 

life-world is, as we have seen, a complex intentional process. It 

involves formal abstraction and idealization, but also selection. 

Of all the qualities that make the life-world, only those that can 

be objectively mathematized, the primary qualities, are 

considered worthy of inhabiting the mathematized physical 

world. The others, the secondary qualities, are dismissed as 

essentially subjective unless they can be causally related to 

mathematizable qualities that can, then, take their places as 

true objectively real qualities. A lot happens in perceptual 

physical reality, the only truly real, that do not find a way into 

mathematical-physics.19 
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Moving back from mathematical representations of the 

perceptual world to the perceptual world itself is not always so 

straightforward, even when all mathematical entities represent 

something in principle perceivable. Idealizations are sometimes 

so dramatic that mathematical representations are almost 

useless to handle concrete situations. Approximate techniques 

must then be devised – for example, linearization – and 

sometimes sheer brute force is preferable to sophisticate 

mathematical models.20      

 

5. To conclude, let’s see how much of what was said can 

be traced back to Husserl himself. One thing he clearly saw, 

that the mathematical representation of perceptual reality, the 

first and most fundamental use of mathematics in science, on 

which all others depend, is a methodological tool, not the 

uncovering of the innermost aspect of physical reality.21 Reality, 

as it appears to us, is perceptual reality, which we manage to 

constitute out of the sensorial hyletic material.22 Mathematical-

perceptual reality is a methodological construct, not the 

unperceivable mathematical core of perceptual reality.23 

Mathematical structures are not in reality, they only represent, 

for strictly methodological purposes, formal-structural aspects 

of reality in highly idealized form. To forget this is to cloud the 

applicability of mathematics in science in mystery, making it 

utterly incomprehensible. 

Husserl was also aware of the predictive role of 

mathematics; in fact, it seems that this was for him the sole 

role mathematics plays in science: to provide more refined 

anticipations of experience than those allowed to perception. All 

this is clearly stated in Crisis (Husserl 1970, §9h):  

“Mathematics and the mathematical science of Nature’, 

or still the dressing with symbols of symbolic-mathematical 

theories, contains all that that, for the expert and the cultivated 

men, replaces (as the objectively real and true Nature) the life-

world, substituting it. It is this covering of ideas that makes us 

take for the true Being what is only a method – a method that 

is there to correct, in an infinite progression, by “scientific” 

anticipations, the “rough” anticipations that are originally the 

only that are possible in the realm of the effectively (really and 
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possibly) experienced in the life-world. It is this covering of 

ideas that renders the authentic sense of the method, formulas 

and theories incomprehensible, and that, in the naiveté of the 

method at its birth, was never understood”. 

The expression “anticipation of experience” is somewhat 

ambiguous. Clearly, when calculating the unknown value of 

some magnitude in terms of others that are known by using 

mathematical formulas one is making a prediction, i.e. an 

anticipation of experience. But two things can happen here; 

one, all variables in the formula have known denotations. For 

example, computing the value of the pressure of a gas knowing 

its temperature and volume using the law of perfect gases. 

Another, some variables do not have interpretation (a semantic 

content), appearing in the formula only as mathematical 

contributions. For example, “electrical resistance” as something 

“in the body” accounting for the expression of the linear 

dependence between voltage and current intensity in that body. 

In this case, mathematics does not “predict” simply the value of 

a known magnitude but the existence of a new relevant 

magnitude, thus playing a heuristic role. Both cases can count 

as anticipations of experience and Husserl may have had both 

in mind, thus including the heuristic as part of the predictive 

role of mathematics, but this cannot be asserted with certainty. 

Husserl also realized that mathematics has an 

instrumental role in science, but here he becomes a bit too 

conservative. He thought that with the introduction of non-

representing elements in mathematical context of 

representation science risked meaninglessness and losing itself 

in symbolic alienation, away from the possibility of perception, 

the ground where knowledge must be rooted. Physical 

knowledge can be symbolic, he thinks, but only insofar as 

symbols already have or can be given a meaning in the 

perceptual world, and for strictly practical reasons. To indulge 

in essentially meaningless symbolic manipulations, involving 

symbols that could not, even in principle, be referred to 

perception, was for him to open the doors to possible falsities. 

Even though mathematical-physical theories involving in an 

essential, non-eliminable way meaningless symbols may be 

consistent, if these theories consistently extent theories without 
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meaningless symbols, Husserl claims, their observable 

consequences need not to be true.24 

However, as I believed to have shown, purely formal 

(non-representing) extensions of representing mathematical 

theories are fundamental for mathematics to cover the full 

spectrum of its possible scientific applications, more notably the 

predictive and the heuristic, and any restriction in this 

direction is undesirable, no matter how counterintuitive. 

Husserl seems to oppose such liberalism. The fundamental 

place he reserves for intuition, perception particularly, in his 

epistemology seems to block the essential (non-eliminable) use 

of non-intuitive, symbolic methods of knowledge. 

Nonetheless, he poses no such restrictions to formal 

mathematics as a logical propaedeutic to knowledge. At its 

highest level, Husserl claims, formal logic has the task of 

investigating (on the formal apophantic side) formal systems in 

general, even invented ones, their corresponding formal 

domains (on the formal ontological side), and their mutual 

relations: theories to theories, domains to domains (a sort of 

universal algebra) and, as should be obvious but not explicitly 

mentioned by Husserl as far as I know, theories to domains (a 

sort of model theory). By investigating how truths migrate from 

theories to theories and from domains to domains through the 

formal-logical relations theories entertain with theories and 

domains with domains, we can hope, it seems, to find out 

conditions that guarantee, at least in some cases, that (in 

principle) perceivable consequences of theories with imaginary 

symbols consistently extending purely perceptual theories are 

actually true, thus providing logical-epistemological 

justification for the use of theories with non-eliminable 

“imaginary” components in science. 

Husserl’s dismissal of imaginaries as possible sources of 

falsities in science as explicitly stated in his talks of 1901 in 

Göttingen and apparently implicitly admitted in Crisis, where 

it is also considered as a form of alienation, does not have, then, 

a strictly formal-logical motivation. Such a prejudice seems to 

emanate from an epistemological constraint: our knowledge of 

the perceptual world, the only real world, can rely on 

mathematical methodologies, provided, however, that we can 
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always “undo” abstractive and idealizing acts and move back 

from mathematics to perception. Mathematical representability 

must always be a two-way street. The primacy of intuition in 

Husserl’s epistemology holds firm to the very end and the call 

to personal responsibility still resonates in Crisis, his last word 

on the matter. 
 
 

NOTES 
 
 

1 I will not address this question here but, according to Husserl, mathematical 

theories of perceptual reality (whether they involve imaginary entities or not, 

see below) are not confronted with raw perception directly, but with 

mathematical substitutes of perceptual reality. Therefore, the mathematical 

character of reality, as a presupposition about the essence of reality, is never 

put to empirical test. This presupposition (or hypothesis, as Husserl calls it) 

must, then, be either a metaphysical presupposition, as tacitly admitted in 

general, or, according to Husserl, a transcendental presupposition that goes 

with the intentional constitution of physical reality as an object of 

mathematical-physics (see Husserl 1970, §9e).  
2 However, as I will argue below, Husserl probably did not see such a 

justification as epistemologically valid. 
3 Husserl sees in Greek geometry already a change of the original meaning of 

geometry.  
4 Free fall is an important topic in Dialogo, where a law is stated according to 

which the final velocity of a body falling freely along an inclined plane depends 

only on its height, not inclination. From the definition of equality of velocities, 

Galileo arrives at the law that the times spent by two bodies falling freely along 

inclined planes of same height and different inclinations is in the same ratio as 

the lengths traveled.   
5 Here is a much simpler example of how mathematics can reveal, once physical 

nature is mathematized, quantitively, but not qualitatively, hitherto unknown 

aspects of reality: experience shows that the intensity of electric current 

depends linearly on the difference of electric potential (Ohm’s law), but that this 

relation varies with the object considered. This suggests that objects have 

different “electrical resistances”, the nature of which we may not understand, 

but whose intensity one can measure. From this notion one can define another, 

electrical resistivity, which depends only on the material the object is made. 

Theories can be devised to give these magnitudes a qualitative content (atomic 

theory, for example), but in these efforts mathematics can only help by 

imposing formal (in this example, quantitative) constraints. 
6 Formal-abstract aspects of reality are “structural” in the sense that they have 

to do with how things relate to one another independently of what they are and 

the nature of these relations. Formal abstraction dematerializes, leaving behind 

only abstract form (structure).  
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7 Formal aspects of reality are abstract in the sense of being ontologically 

dependent: how things are related depends ontologically on there being things 

related in some way. Structures are abstract aspects of structured system of 

things, themselves somehow given or only theoretically characterized. By being 

ideated (turned into ideas) structures admit different instantiations. 

Idealization is not the same as ideation; idealization is a limit process; for 

example, a physical body and its trajectory in space taken, respectively, as a 

material geometrical point and a geometrical line or the quantitative relation of 

the mass of a body with respect to that of a standard body as given by a single 

well-determined real number.     
8 Structural aspects of reality are, in a sense, ways of seeing, perspectives. 
9 Perceptual reality is only another name of physical reality; physical reality is 

in principle always perceivable, directly or indirectly. 
10 Magnitudes are countable when expressible by natural numbers and 

continuous when expressible by real numbers. Numbers, either natural or real, 

are ideal formal-abstract relations with which one can express in idealized form 

quantitative relations of physical reality. So-called complex and more general 

number concepts are not, strictly speaking, numbers, but number-like entities 

behaving only operationally like numbers. 
11 Sometimes numerical structures are used to represent aspects of physical 

reality without numbers expressing quantity but functioning instead as tags.  
12 Of course, explanation usually goes with predictive power, but I believe that 

science is fundamentally an instrument to predict and control. The history of 

modern science seems to show, or so I think, that putting order in the 

phenomenal world and being capable of making reliable predictions about it are 

usually preferred to having an explanation of its behavior when these tasks 

cannot be simultaneously fulfilled. 
13 Mathematics itself is rooted in and born out of practices of the lifeworld (see 

da Silva 2017).  
14 It is because scientific theories have infinite domains that they must, 

according to Husserl, be ideally definite, that is, finitely axiomatizable and 

syntactically complete. 
15 Abstraction, of course, is an intentional, not a real process, either physical, 

which would be absurd, or mental. Abstraction is a refocusing of intentionality. 
16 To ideate, on the other hand, is posit an idea from its instances by free 

variation. 
17 After reducing the objects of the world to clusters of numbers it is easy to be 

misled into believing that they are nothing but numbers, a dramatic form of 

Pythagoreanism. This, however, is taking a product for a given, “forgetting” 

intentional action. Max Tegmark (Tegmark 2014) indulges lavishly in this 

mistake; from the purely mathematical character of mathematical-physical 

reality (a construct) he infers that transcendent reality (a given) is purely 

mathematical, taking a method of scientific inquiry for its object. 
18 One may wonder at the status of such presupposition, that the world is 

submitted to laws. As I see it, this is neither a hypothesis nor an empirical fact 

but, rather, a transcendental presupposition that goes with the intentional 

constitution of the world as an object of scientific inquiry. 
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19 Therefore, as Husserl insisted, mathematical-physics cannot serve as the 

model for all sciences, not even for all the natural sciences. Phenomenology, for 

example, which intends to be essentially descriptive and intuitive, has not much 

to learn from it.  
20 “The point here is that when we carry out engineering in different 

circumstances, the way we perform mathematics changes. Often the reality is 

that when analytical methods become too complex, we simply resort to 

empirical models and simulations” (Abbot 2017, section III).    
21 The methodological effectiveness of mathematical representations of 

perceptual reality can easily mislead the scientist into believing that 

transcendent reality existing out there, prior to being projected into the 

consciousness of the perceiving subject as perceptual reality, is itself a 

mathematical manifold. Otherwise, he thinks, the effectiveness of mathematics 

in science becomes a mystery. It takes a transcendental-idealist perspective to 

solve this “mystery” and move mathematics from metaphysics to methodology, 

where it belongs.   
22 The constitution of perceptual reality, as we have seen, is not properly 

intentional since it is not a fully conscious process. Perceptual reality is 

constituted as transcendent reality “filters through” the senses and the 

sensorial impressions are “interpreted” by proto-intentional psychophysical 

systems that give them perceptual sense. 
23 Husserl is meridionally clear about this, the mathematical world is not a 

given, but a rational construct (see Husserl 1970, §9b)   
24 Although Husserl is not so explicit in Crisis, he leaves no margin for doubt as 

to the role of the “imaginary” in science, or at least in mathematics, in a couple 

of talks he delivered in Göttingen in 1901 (Husserl 1970, pp. 430-51): maybe to 

facilitate calculations that must, however, at least in principle, be possible 

without them. Non-denoting terms cannot have an essential role in science (see 

da Silva 2010). He never disowned such a view, which appears in later texts as 

well, and there is no reason why he would not have extended it to the whole of 

science, not only contentual, interpreted mathematics (formal mathematics, on 

the other hand, as a chapter of formal ontology is another matter; it is, in a 

sense, “imaginary” mathematics and need not care about interpretations).  
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